
AD-A242, 274 Fr 'P~
AD-A242 274 IMENTATION PAGE i o, 0704.0188

Ito amp 1 hxw iw repm, toUme~imwdg - da forea s gia quuting nmu*e da
Wft k~ 1215 J I, D* 11. Suk 1204..kk%1m VA22M3O and to d Ofie d W aoad PapRla" Af Ofic 0

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE .EPORT TYPE AND DATES COVERED

I I Final: 29 Nov 1990 to 01.Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
R.R. Software, Inc., Janus/Ada 2.2.0 PHAR Lap/DOS, IBM PS/2, MOD. 80 Phar
Lap/DOS 3.3 (Host & Target), 901120W1 1088

6. AUTHOR(S) Dl *
Wright-Patterson AFB, Dayton, OH

USAq NOV5 199

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) -- 8. RMING ORGANIZATION
Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-436-0891
Wright-Patterson AFB, Dayton, OH 45433

0. SPONSORINGNMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081 I
11. SUPPLEMENTARY NOTES iA

N)o , F "R~ ,-Pe- 0C<& &. L-- -- v
1. MaSTRIBUThON WLABIUTY STATEMN 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
R.R. Software, Inc., Janus/Ada 2:2.0 PHAR Lap/DOS, Wright-Patterson AFB, OH, IBM PS/2, MOD. 80 Phar Lap/DOS 3.3
(Host & Target), ACVC 1.11.

91-15079

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTOF REPORT -II OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 S:andard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 29 November 1990.

Compiler Name and Version: Janus/Ada 2.2.0 Phar Lap/DOS

Host Computer System: IBM PS/2, MOD. 80 (under Phar Lap/DOS 3.3)

Target Computer System: IBM PS/2, MOD. 80 (under MS DOS 3.3)

Customer Agreement Number: 90-08-02-PRS

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901120W1.11088 is awarded to R.R. Sqftware, Inc. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steveh 7. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

SAda Validation Organization
'.' Director, Computer & Software Engineering Division Acsalisoa ?or

Institute for Defense Analyses I--'iS OkAI
Alexandria VA 22311 TIe iB 0

Jus t 11, -e "it in_

Ada Joint Program Coce _DiJ- r, utton/
Dr. John Solomond, Director Av~ilaility Cods
Department of Defense . 'i and/o -
Washington DC 20301 it

D13t Spscial

AVF Control Number:AVF-VSR-436-0891
1 August 1991
90-08-02-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901120W1.11088
R.R. Software, Inc.

Janus/Ada 2.2.0 Phar Lap/DOS
IBM PS/2, MOD. 80 Phar Lap/DOS 3.3 -> IBM PS/2 MOD. 80 MS DOS 3.3

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Declaration of Conformance

Compiler Implementor : R.R. Software, Inc.
Ada Validation Facility : Wright-Patterson AFB, Ohio 45433-6503
Ada Compiler Validation Capability (ACVC) Version : 1.11

Base Configuration

•Ada'Compiler Name : Janus/Ada Version : 2.2.0 Phar Lap/DOS
Host Architecture: IBM PS/2, Mod. 80 Host OS & Ver.:Phar Lap/DOS 3.3
Target Architecture: IBM PS/2, Mod.80 Target OS & Ver.: MS DOS 3.3

Implementor's Declaration

I, the undersigned, representing R.R. Software, Inc. have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that R.R. Software, Inc. is the owner of record of the Ada
compiler listed above, and as such, is responsible for maintaining
said compiler in conformance to ANSI/MIL-STD-1815A. All
certificates and registration for Ada language compiler listed in
this declaration -shall be made only in the owner's corporate name.

) ames A Stiart "DateYice President
R.R. Software, Inc.

Owner's Declaration

I, the undersigned, representing R.R. Software, Inc. take full
responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validation Summary Report. I declare that all of the Ada
language compilers listed, and their host/target performance are
in complianc, with the ANSI/MIL-STD-1815A.

Y amesA* StewartJDat
~Date

ice Presrdent,R.R. Software, Inc.

TABLE OF CONTENTS

CHAPTER 1 INTmRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 AC*C TEST CLASSES 1-2
1.4 DEFINITI(N OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING m.. T 3-1

3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801'North Beauregard Street
Alexandria VA 22311

1-1

INTROUCTION

1.2 REFERENCES

Reference Manual for the Ada Programming Language, [Ada83]
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

Ada Compiler Validation Capability User's Guide, [UG89] 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Staidard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not opirating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects 'illegal language usage. Class
B tests are not executable. Each test in this qlass is coiiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTICN

0 "For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly'some inapplicable tests (see Section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITIN OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
,(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance 'for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance .of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
anAda
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storagb for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during. execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODCTION

Conformity Fulfillment by i :product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

-)eclaration of A formal statement from a customer assuring that conformity
Conformnce is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides seryices such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of. Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programing
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn-by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BD1B02B BD1BO6A ADIBO8A BD2AO2A
CDZA21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2BI5C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CEJ902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113Li.Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefiied type SHORTINTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER.

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT..

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 48 or
greater.

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5., For this
implementation, MACHINEOVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINEOVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

D55A03E..H (4 tests) use 31 or more levels of loop nesting which exceeds
the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

D64005F..G (2 tests) use 10 or more levels of recursive procedure calls
nesting which exceeds the capacity of the compiler.

B86001Y checks for a predefined fixed-point type other than DURATION.

2-2

IMPLEMENTATION DEPENDENCIES

C96005B checks for values of type DUPATION'BASE that are outside the
range'of DURATION. There are no such values for this implementation.

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

AD9004A uses pragma INTERFACE for overloaded subprograms; this
implementation rejects this use due to calling conventions. (See
section 2.3.)

CDA201C instantiates Unchecked Conversion with an array type with a
non-static index constraint; this implementation does not support
Unchecked Conversion for types with non-static constraints.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL1IO
CE2102F CREATE INOUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT_10
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN. IN FILE SEQUENTIAL 10
CE21020 RESET INFILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT-FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET INFILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT I0
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

2-3

IMPLEMNMTION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attempted.

CE2107B.iE CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

EE2201D uses instantiations of package SEQUENTIAL 10 with unconstrained
array types; this implementation raises USEERROR-on the attempt to
create a file of such type.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUEfIALIO. This implementation does
not restrict file capacity.

E2401D uses instantiations of package DIRECT 10 with unconstrained
array types; this implementation raises USE_ERROR on the attempt to
create a file of such type.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate -or tle external
file. T1is implementation does not have inappropriate values for either
line length or page length.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 88 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B25002A B26005A B27005A
B29001A B37106A B51001A B53003A B55A01A B63001A
B63001B B73004B B83003B B83004B B83004C B83004D
B83004F B83030D B83EO1C B83EOlD B83EOlE B83EOlF
C85006A C85006B C85006C C85006D C85006E B91001H
BA1001A BA1001B BA1001C BAi010A BA1010D BA1101A
BAII01E BA3006A BA-3006B BA3007B BA3008A BA3008B
BA3013A BC2001D BC2001E BC3005B BD2BO3A BD2DO3A
BD4003A

2-4

IMPLEMENTTION DEPENDENCIES

C85006A..E (5 tests) were graded passed by Test Modification as directed by
the AVO. This implementation generates more object code for these tests
than it can contain in a single compilation unit. Each of these tests was
split into five equivalent subtests.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures,
Length Check or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which Use the generiE procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses required support for
Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.11, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, and 58..63 in ENUMCHEK were com ented out.

CD1009A CD1009I CD1009M CD1009V CD1009W CDlCO3A
CDlC04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A cD2A31A..C
CD2A81A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

BD4006A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that non-static values in component and
alignment clauses are rejected; but static alignment values of 8, 16, & 32
are assumed to be supported. This implementation supports only values 1 &
2; it rejects the clauses at lines 42, 48, 58, and 63, which are not marked
as errors.

AD9001B was graded passed by Processing Modification as directed by the
AVO. This test checks that, if pragma INTERFACE is supported, no bodies
are required for interfaced subprograms. This implementation requires that
some foreign bodies exist, even if the subprograms are not called. This
test was processed in an environment in which implementor-supplied foreign
bodies were present.

AD9004A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test uses a single INTERFACE pragma for several overloaded
procedure and function subprograms; this implementation does not support
the pragma in such circumstances due to the calling conventions of the
interfaced language, and thus rejects the pragma.

CDA201C was graded inapplicable by Evaluation Modification as directed by
the AVO. This test instantiates Unchecked Conversion with an array type
with a non-static index constraint; this implementation does not support
Unchecked Conversion for unconstrained types and so rejects the
instantiation. The AVO ruled that various restrictions on
Unchecked Conversion may be accepted for validation under ACVC 1.11,
because A!-00590, which addresses Unchecked Conversion, did not show an ARG
consensus at the time of ACVC 1.11's release.

2-5

IMPLEMENTATICN DEPENDENCIES

CE2108B, CE2108D, and CE3112B were graded passed, by Test Modification as
directed by the AVO. These tests, respectively, check that temporary files
that were created by (earlier-processed) CE2108A, CE2108C, and CE3112A are
not accessible after the completion of those tests. However, these tests
also create temporary files. This implementation gives the same names to
the temporary files in both the earlier- and later-processed tests of each
pair; tihus, CE2108B, CE2108D, and CE3112B report failed, as though they
have accessed the earlier-created files. The tests were modified to remove
the code that created the (later) temporary file; these modified tests were
passed. Lines 45..64 were commented out in CE2108B and CE2108D; lines
40..48 were commented out in CE3112B.

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIROMENT

The'Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Isaac Pentinmaki
R.R. Software, Inc.
P.O. Box 1512
Madison, WI 53701

For a point of contact for sales information about this Ada implementation
system, see:

Jim Stewart
R.R. Software, Inc.
P.O. Box 1512
Madison, WI 53701

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 Summary Of Test Results

An Ada- Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3773
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 113
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 314

g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

The diskettes containing the customized test suite (see section 1.3) were
taken on-site by the validation team for processing. The contents of the
diskettes were installed onto a Northgate 386 wi'h DOS 3.30 and then
archived for installation on the actual host computer. The files were
restored onto an IBM PS/2 Model 80 with DOS 3.30.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.,

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATION

The options used for Janus/Ada are:

/Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running B-Tests; otherwise every error would have
to be responded to.

/W - Warnings off - warnings were suppressed mainly because of the
many confusing warnings the validation tests produce. Many
validation tests have intentional errors (such as an expression
which always raises an exception, use of null ranges, unreachable
code, etc.). The large volume of warnings produced made it
difficult to grade the B-Tests in particular, so they were
suppressed.

/BS - Brief Statistics. This was also used to cut the amount of output
produced by the compiler during compile time.

IS? - Used this option to re-direct the compiler scratch files into
a Ram disk where possible (7 is replaced by a drive path),
thus speeding up the compiles.

/01 - Memory iidel 1 - this directs the compiler to use memory model 1
for the output. This model allows much more code than memory
mcdel 0, and is necessary in order to have a few large tests be
able to run.

/D - Debugging code off - this directs the compiler to not generate
any debugging code (generally line numbers and walkbacks). This
was also used to cut the space used by the tests.

All other options used their default values.

Then, all of the non-B-Tests were linked with the options:

/Q - Quiet error messages - suppresses user.prompting on errors.
Necessary for running L-Tests; otherwise every error would have
to be responded to.

/T - Trim unused code - this option directs the linker to remove
unused subroutines from the result file. This can make as much
as a 30K space saving in the result file.

/B - Brief Statistics. This was also used to cut the amount of output
produced by the Linker.

/O1 - Memory model 1 - to match the compiler memory model.

All other options used their default values.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$YMsX IN LEN 200

$BIGIDI (i..V-i -> 'A', V -> '1')

$BIGID2 (l..V-i -> 'A', V -> '2')

$BIGID3 (l..V/2-> 'A') & '3' &
(i..V-1-V/2 -> 'A')

$BIGID4 (I..V/2 -> 'A') & '4' &
(l..V-1-V/2 -> 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIG REAL-LIT (l..V-5 -> '0') & "690.0"

$BIG STRING1 "' & (l..V/2 -> 'A') & " '

$BIGSTRING2 '"' & (1..V-i-V/2 => 'A') & 'i' & '"'

$BLANKS (l..V-20 -> '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "ll:;

$MAXLENREALBASED_LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAX_STRINGLITERAL "' & (i..V-2 -> 'A') & "'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 16

$ALIGNMT 2

$COUNTLAST 32_767

$DEFAULT_MEM_SIZE 65536

$DEFAULTSTORUNIT 8

$DEFAULT SYS NAME MS DOS2

$DELTADOC 2#1.0#E-31

$ENTRYADDRESS (0, 16#40#)

$ENTRYADDRESS1 (0, 16#05#)

$ENTRYADDRESS2 (0, 16#01#)

$FIELDLAST 32_767

$FILETERIIINATOR I r

$FIXEDNAME NO SUCHFIXEDTYPE

$FLOAT NAME NO SUCHFLOAT TYPE

$FORMSTRING ""

$ FORMSTRING2 CANNOT RESTRICT FILECAPACITY

$GREATERTHAN_DURATION
300_000.0

$GREATERTHAN DURATION BASE LAST
1. 0E6-

$GREATERTHAN FLOAT BASE LAST
- I.UE+40

$GREATERTHAN FLOAT SAFE LARGE
- - I.AE38

A-2

MACRO PARAMETERS

$GREATERTHAN SHORT FLOAT SAFE LARGE
1.07308 -

$HIGHPRIORITY 0

$ILLEGAL EXTERNAL FILE NAME1
- NODIRECTORY/FILENAME

$ILLEGAL EERNAL FILE NAME2
- BAD/^ ->

$ INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATE PAGELENGTH
-1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ("A28006DI.ADA")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006EI.ADA")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGER LASTPLUS_1 32768

$INTERFACE LANGUAGE MASM

$LESSTHAN DURATION -305_000.0

$LESSTHAN DURATIC* BASE FIRST
-1. 0E6

$LINETERMINATOR ASCII.CR & ASCII.LF

$LOW_ PRIORITY 0

$MACHINECODESTATEMENT
NULL;

$MACHINECODETYPE NOSUCH TYPE

$MANTISSADOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINTPLUS_1 2147483648

$MININT -214783648

A-3

MACRO PARAMETERS

$NAME NOSUCH' INTEGER TYPE

$NAME LIST MSD052

$NIAPE _SPECIFICATION1 D:/VALID/X212OA

$NAM~ESPECIFICATIN2 D:/VALID/X2120B

$NAMESPECIFICATION3 D :/VALID/X3119A

$NEGBASEDINT 16#FFFFFFFF#

$NEWMENM SIZE 65536

$NEWSTORUNIT 8

$NEPLPYSNME MSDOS2

$PAGETERMINNTOR ASCII.FF

$RECORDDEFINITION RECORD NULL; END RECORD;

$RECORDNAME NO SUCHMACHINE-CODETYPE

$TASK SIZE 16

$TASK STORAGE SIZE 512

$TICK 0.01

$VARIABLEADDRESS FCaDECL. SOME VAR'ADDRESS

$VARIABLEADDRESS1 FCNDECL.*SOMEVAR2 ADDRESS

$VARIALEADDRESS2 FCNDECL. SOME VAR3 ADDRESS

$YOURPRAGMA ALLCHECKS

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation are provided by the
customer and can be found in Appendix F, section F.9, page F-14.

B-1

CCMPIIATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation are provided by the customer
and can be found in Appendix F, section F.9, page F-14.

B-2

Jllnk Manual

Jink Manual

The Janus/Ada linker is used to combine a main program with system and
user defined compilation units to create an executable program. Only object
code files, that Is, JRL (Janus relocatable) and SRL (specificatlon relocatable)
fles - created by the Janus/Ada compiler, assembler, or other compatible
products can be combined, For more Information on SRL and JRL files, see
Section 10.1 of the compiler manual. The linker only needs to be supplied
with the name of the object code file for the main program. t will search disks
(Including a swap disk, If desired) for the required units. It determines the
loading order of Ue units, and finally produces an executable program. The
linker is disk based, so any possible sized program may be linked with JUNK
It may not be possible to produce an easier to use linker.

Using the Linker

The user only needs to type the command

JUNK td:]progjisme

to ruin the linker. The disk name d: specifies the disk on which to look for the
main program. The prog..name is the name of the object code file for the
main program. wihuut the ,SRL or JRL file name extension. The result file
Is placed Into the file with the same name as the main program object code,
and the file name extension appropriate for your system (.COM or .EXE for
MS.DOS). The result file is plecod on the disk where the main program is
found.

Examnpes:

JUNK TESTPROG
- Links TestproU to inako an exocutable piogiam.

JLINK B.QSORT
Links Oson (wmllri will be found on me 8: disk)
into an eAecutabie piogram

This is al of the infomiatlon needed to use the linker. More details about the
operation of the linker will be found on succeeding pages.

L ,K- I
Revision 4.6

JllnkMarual

Linker Operation

The linker operat% automatically. However, to better undeustand the opera.
tlon of the linker options (below), a brief deecripton of the linker operation
Is given here.

The following disk (drive) name definitions are used throughout the rest of
the linker manual.

The delfmlt disk is the one currently logged in on your eem. This is the disk
name which appenrs in the system prompt.

The source disk Is the disk which Is spslifld on the command line as the
source of the main program. Unless a different disk Is specified on the
command line. It will be the default disk.

The destlnoon disk is the disk to which the output wacutable file will be
written, Unless a different disk is specified on the command line, It will be the
source disk.

The sump disk Is a disk specified on the command line which allows a whole
set of disk to be searched by swapping each disk into a disk drive. Any disk
other than the destination disk may be u&d for this purpos. There Is no
swap disk unless the swap option is usd.

In many ca". the default, source, and destination disks refer to the same
hard disk, and the swap disk is not needed.

There are two kinds of segments (memory areas) referred to In this manual.
Physical set,.nents ate the segments inposed by the underlying hardware. A
logical segment Is the segmenting imposed by the Janus/Ada compiler and
assembler, Each unit is divided into three logical sgrents code, data, and
constant. The linker's Job is to combine many logical segments Into the proper
number of physical seqyrents. Whenever a segmcnt Is referred to in the rest
of this manual, it mawns a logical segment, unless otherwise noted.

The mapping between physical segments and logical segments Is specified.
by the program's memory model. Many machines with modem architectures
allow the mapping of the many logical segments into one large physical
segment. These machines require only one memory model. Other machines
(like the 8086 family) have an architecture which makes the mapping more
difficult. The different models generate dlff'ernt amounts of code, run at
differenit speeds, and have dtierent liits on the size of programs.

UNK.2
Copyight 1969 R P Sct-,.ai, !nc

Jlunk Manual

On the 8086 (and chips in the same family), the default memory model will
gerally cause the linker to produce a COM file. This memory model, called
Model 0, has a maximum of 64K of code in a program. To allow the use of
more code in a program, one mry use the /01 (Model 1) option In both the
compiler and In the linker (see below). This option causes the linker to
produce an EXE file; the code size is restricted then only by your operating
system and by the amount of memo.y avalatle on your machine. Note that
iome versions of the Janus/Ada compiler are so!d without the libraries to
allow the use of Model 1.

All compilation units In a given program must be compiled with the same
memory model, and the program must be linked with that same model; the
compiler and the linker enforce this nle.

The linker operates in three phaws. The flist phase loads the headers of all
of the units, and thereby determines which units are noeded, This phase also
records the disks where the units are found (for later use) and creates a table
of entry points (places where other units may access this one). The disks are
searched In the followin order: first the source disk, then the dufault disk,
and then the swap disk unill'all of the units are found (or the linker Is aborted
by the user).

The second phase does not use the disks at all The table of units to load
created by the first phase is used to determine the loading order of the unt
This step is necessary due to the elaboration rules of Ada (See Section 10.5
of the compiler manual), since Janus/Ada loads units In the order In which
they are to be elaborated. The load address of each unit Is determined In this
step. The second phase tries to minimize the amount of disk swapping that
will be necessary in the third phase.
The third phase reads In each unit, fibe up all external references and
relocatable Items, and writes out the resulting executable file. [External
references are usapes of items declared outside of the unit being linked. The
linkage Information held In an external reference Is replaced by actual
madde addresses when It is 'fixed up')

If the swap option is riot usad.,as is usually the case when compiling from a
hard disk, the fixing up is done wichout any user Intervention. A prompt Is
Issued each time the swap disk needs to be changed, with a list of the units
which should be on the disk Inserted. The linker tries to be friendly about
errors in this process- It the des!-nated file is not found, ltjust asks again for
the disk to be Inserted.

Rvison 4.6

JAsik Manual

ULtker Cormnand Line and Options

The linker co maud line looks like:

JUNK jD:1progname{/options)

The progname is the name of the object code le (SRL or JL file) of the
main program, without the 4,SRLI or '.JRLI extension. (We will refer to this
simply as ar SRL file from here on In this manual; however, e4rything said
about the main program's SRL file should be understood to apply If the main
program t s generated a JRL [as It would If a separate specification was
provided]). The optional disk name D allows the sourc dis to be specified
as some other disk than the default disk. The main program's SRL file should
be found on the source disk. The main program must be a Janus/Ada
pammetirlass procedure.

Note;
No file'name extension i- allowed.

In general, the name of te SRL file for the main program corsponds to the
first eight letters of tie unit name for the main program. If that name had
almady been used by soie other unit, however, then the SR file name will
vary. This can only happen it some other unit in the same program library
has the same first eight ktter as the main program. For more informatlon on
Janus/Ada fil naming conventions, im Section 10.1 of the Janus/Ada
compiler manual.

Many users will never need any options; most that do will need only the /01
option to allow for the larger memory model, the /F2 option to use hardware
floating point, the/Toption to reduce the size of the executable, or occasional.
ly the/E,L. /Q, or/S options. However, all the fellowing options are provided
to Increase the flexibility of the linker

Chhhh Set the starting nddress of the code within the physical code
segment to hhhh (hexadecimal). The physical code segment will
still be alocouwd from zero by the operating sstem. The physical
code segment cans be loaded anywhere in special applications, so
this option will be used veiy rarely. The resulting program will not
work under MS.DOS.

Dhhhh Set the .art ng addiess of the data within the physical data
seginent to hhhh (hexadec'ana), The physical data segment will
still be allocated from zeto. The physical data segment allocatlon

UINK.4
CopYright 1989. it 11 ,fdiww. Inc

JlInk Manual

address caia be chnnged by modifying JLU86. This option will
only be used for very sp-cial applications. The reulting program
will not woik under MS .DOS unless JUBS6 is modified.

E Create an EXE file. This Is assumed if the/01 option Is given. This
allows a&low a somewhat larger total program size if memory
model 0 is used, by using differentphysical segments for the logical
constant segmeni and the logical code segment.

Fn Usethe class n (where n Is 0 or2) floatingpoint libra .If a floating
point library of the specified class already exists in the link, then It
is used. Othetwise, the default floating point llbrary Is used. If this
option is not used, the class 2 library is used If any unit was
compiled with the /F (hardware floating point) compiler option,
or otherwise contains hardware floating point operations; and the
class 0 library is used othoewise. The clamsus aar

0 Universal software floating point (FLOATOPS).

1 Not suppurted in our Ada compilers.

2 Universal haidware floating point (FLOAT87 on the 8086
series). Wurning" In some versions of Janus/Ada, the
hardwate of ilie 8087 chip can causesomesurprilsng results
when using this option. Check Appendix Section L2 In the
compiler manual to see If your veision is affected.

3 Nut supported In our Ada compll.S.

This option ailows the use of different forms of floating point sup-
poil without iecompilhng ti ptogram. It also eliminates the pos-
sibility of moe than one fibating point library being used In a
single program (which does not work!). An error is generated If you
try to use sotwar sup poit witti units complied with the /F option.

L Turns on the istng option. The currant unit being worked on Is
printed, and et libk' of atdtesses for each unit is listed on the con-
sole. These can be used for dcbugging. The format of the table Is:

Pack-name Code.hhhh Data-hhhh Const-hhhh
where hhhh Is .he hex value of the first address assigned to that
unit's :okl dntw. .r ,,oabituait segment. Tihe order given for the
units It tiw' !o::d .: .o third passes of the linker specifies the

R!W!n 4.6

Juink Manual

elabotlon oxder of the various units (se Section 10.5 of the
compiler nmanual}.

Mhhhh Set the minimum size of the physical code segment phis the
physical constant segment. The size hhhh Is In paragraphs (16
byte Inczeme~nts). This forces the start of the physical deat segment
to start hhhhO (hex) bytes after the start of the physical code
setjmmt. If this option is used, and the physical code segment plus
the physical constant segment sio exceeds the minimum size, a
warning imssage Is produced. This option is primarily useful for
programs which use the Chain procedure and wish to preserve
the physical data segment. The option essentially cauum the
physical data segment to be In the same absolute ations In ach
program which us it.
This option may only. be used with the small memory model
(model 0).

On Use memory model n (when n is a number beween 0 and 7). This
option Is used to specify an alternative memory model to the small
model used by default. All units linked must be complied or
assembled with the speclfid memory v modeL The memory models
are:

0 Sm.ll code. (64K code, 64K data, 64K constants). The
•detaulh model, and the only one supported in t C-Pak.
Thi6 muc~t genlerates a COM file, unless the /E colon Is
spcited. A COM Ill is limited to 64K total for both code
and considnis. If more Is necesmay, use.the /E option, or
model I..

I Large code. (Unllmited code, 64Kdata, 64Kconstants). The
code sie is limited by available memory. Thbis model is
apptopriate for larger programs. This model generates a
.EXE f&. Progiams that use this model will typically be
about teil to twenty percent blger and slower than the
equivalent ptogima using model 0.

2-7 Unued.

Q Pioduce quiet error messages. In the nomial mode of operation,
the link wtits after evoiy tefor so that the usr can see the error
wilthout It , MolIn.j off the screen. This option suppress" those
prompt,.

LINK 6

Jhnk Manual

Rpath Re-direc: the linker output to the specfled path. the defauli Is the
same path its filinduiCl.

•Spath Use the specified path as the swap disk. The linker will abort if aU
of the libraries needed In the current pogrmzn are not found on
the source ordefauht disk when no swap disk Is specified. If aswap
disk Is specliled,,a prompt will be Issued for the user to change the
swap disk. The linking may be aborted at any time during a swap,
The swap disk may not be ihe same as the destination disk Any
other peth n ay be used This option is most useful on sytems
with limited disk capacity (I.e. systems with less than 720K per
disk).

T Trim out unveachable subprograms from uni= that were compiled
with the compiler's IT option (we Appendix Section H.1 of the
compiler nianunli; this can significantly reduc, the se o(the
executable file; at the cost of slowing down the linking process.
Using this option invokes an extra pass, between the first and
second linker passes, to do the requested trimming. We strongly
wcommerd using this option on (at least) final versions of
programs.

Uhhhh Set the starting address of the constants within the physical
constant segment to hhhh hexadecimal. The physical constant
segment will still be allocated from zero. The physical constant
segint allocation address can be changed by modifying JUB86.
This option will only be used for very special applications. The
resulting progrnt will not work under MS.DOS unless JUP 6 is
rioclllOed.

X Pc.iuce ai eXtra detaleld lUnk map for the program. This will be
left in a file calld < pro9 nanre>.LINK where <pmroname> is
the nnme of the main puograin. This file Is mainly for the use of
debuggers and othet future tools,

Examples:

JUNK B:TESTPROG;RD
Link Ttstpiog tiom the 8: disk. and put the

- result on the D: disk.
JUNK C:CHAIN/8$/1L

Link Chain from tio C. disk. soeach the 1. disk
for needed units aOuwing Int; user to swap disks

LIR.-7
Rrvsdon 4.6

Junk Manual

-- when nuoded. Put the esult onto the C. disk,
and display a litilng of the link adlres&es,

JLINK B:SAVEDAIA/M8000/F2
- Unk SaveData from the B: disk, forcing the code size
- to be at least 8000 Hex bytes. Use floating point

model #2.

Error Messages

Ali errors except warnings are fatal. The linker will prompt the user after an
wor so that the user is sure to notice the error. (These prwmpts may be turnd
off by the/Q option). Fatal errous abort the linker.

Some error messags mention aeJRL tile explicitly. The meaning may actually
be for a SRI. file; the enror menages only mention JRL for brevity.

Warnings

Some units use Floating Point Hardware, yet a Software unit was specified

The softwa e arid h rdware floating point should not be mixed. If
you have a fluatis g point co.piocmor on your target machine, we
recorinnd using only hardware oting point, otherwise, use
only software floating point.

The Code segment Is larger than the minimum
(See At option, above, for explanation)

The unit ocxx is obsolete because yyyy was recompled
it will be Ignored

The unit xxxx ias an optional body, and that body was made ob.
solete by re.ompiling yyy (one of the units wthed by xxxx).
Ada's rules state that xu:x must be Ignored unis it Is recompiled.
The linker is Just lehintj you know that this happened; if you really
went to havu the body of x.xx linked In, you should recomple it.
This ianic message can appwar as an error if xx=x is anything other
than an optional body.

Command Line Errors

These are all eauss.- by an iiaconet command line.

Command iine Option Unknown

LINK.9
Copirlht 198 d. iR. Sott.. I..

JInk Manual

An option following a slash does not cornespond to any legal linker
option.

'Disk Name too long
The disk name in the command line may have at most one letter.

Extsnslon tOo long
At most three letters art allowed In a file name extension. (This mes-
sage comes from our standard command line parer. In fact, the
linker does not allow any file name extensions)

Extenslons not Allowed In Linker
The unit name given to link itmist not have a file name extension,

File Name too long
The file nanie in the commrnid line should be at most eight letters
long. This Is no longer checked in most versions of the linker, so
this error should not occur,

Garbage on end of commanu line

The linker cannot un derstand some or all of the command line.
Make sure that the syntax of the command line matches that listed
In the section cailed "Linker Command Line and Options,8 above.

Illegal Disk Name for Option
A disk name for ite /R or/S option was riot in the range A.W.

Illegal Value lot Option
The value given with an option that needs one (/F, /0) Is illegal or
out of range.

Missing Disk Name for Option
An option requiring a dibk tianie (/R, /S) does not hive one.

Missing Value for Option
A value was expx-cted following an option (probably /F or /0).

UIAIP
Revision 4.6

Jlink Manual

Multiple Colons In ile Name
The file tani, lI6ted In thu command line may not have multiple
colons.

Multiple Periods In 1- lie Name
The file name listad In the command line may not have multiple
periods. (Thli message comes from our standard command line
parser. In fact, the linker does not allow file name extenions, so no
periods are allowed)

No File Name Present
No il name was found on the command line.

No Hex Number given for option
An option requiring a Ibexadechnal number (r, /D, or /M) does not
have one,

No option after slash on command lin s
There was a slash on the command Ilie without anything following
it.

Paths not allowod In Linker
The file name In the command line may not include a path.

The Swap disk cannot De the same as the domtination disk
Most operatilni systems do not allow the changing of dsk which
am being witten to; therefore the destination disk cannot be used
as the swap dk.

Too many digits In hex flumber
A hex number specitled in the /C, /D. or /M options may only have
4 digits.

Generic Unit Errors

Illegal genefic instantatilon in xxxx
The instantlaltn on line number yyyy is indirectly circular.
A unit may not Instantiate a unit whicn Instantlates the original unit.

A generic unat carnot Instantiate a generic unit which, directly or in.
directly, causm an instantiatlon of the first unit. This error can
sometimes be determined at compile time. In the case of epautely
compGlid g9x:rics, however, It may not be detected unt link time.

UNK. 10
Coyright 1989. R.{ soff.,:-. Inc.

JAnk Manual

In this case, the enor message gives the name of the object code
file that was pixduced when one of the offending instantiatlons
was compiled, as well m, the line number where that Instantlation
occurred.

Illegal goneric inslantiation in xxxx
Parameter nurnbse yyyy in the Instantiation on line number zzzz
must not be an unconltranec type.

Certain restrictions apply to getieric actual types if the correspond-
Ing genetic formal type is used in certain ways In the body of the
generic unit. In particular, the generic actual ype may not be either
an uncontralned allay subtype (see Section 3.6 of the compiler
manual) ot a di-criminated iecoM subtype with no default$ for the
disidmirants (see Section 3.7.2 of the compiler manual) If the cot-
reponding generic fomtal type is umed In any of the following
ways. as the t/pe of a variable declaration; as the type of a com-
ponent declaration; or as the full declaration of a privat type, This
restriction prevents using generics to create objects thait need to be
constrained but are not. This error can sometimes be determined at
compile time. In the case of separately compiled generics, however,
It may not bW detected until link time. In this case, the error mes-
sage gives te foliowing information; the name of the object code
file that was produced whun te offendlng instantiation was com-
plied; the Ia mneter numbet in the intantiation; and the line num-
ber where the instarntit-lon occurred.

Ufnk Errors

Bad ,JRL file. illegal Data Eoment
The JRI. file or SRL file has a bad data element. Recomplie'the indi-
cated unit and (if H is a specification) any units that depend on It.

Cannot be a Main Frogram
A Main Program must be t Paraointoness Procedure.

The unit that ends up b;Inhg the main prograimi must be a non.
generic prtc'duwe, with n1o parameters.

Cannot use a .COaM fie for this program.
The small model p:r;oim hai too much code and constants to fit in
a CO file, (G.DOS ptws n 64K limit on the size of COM files;
larger or will not load prope ly.) You should either use the
linker's / andjor T options if you are not already doing so;
decrease te sieo! t. units {perhaps by using the OPTIMIZE

UNK,11
Rhviim 4.6

Jllnk Manual

pragma); or recompile arid rellnk the entire program with the large
memory model (model 1).

Code Segment Oveiflow Cannot be larger than 64K
You tiled to link a small memory model program (mode] 0) which
has more than 64K of code You should either use the linke's /T
option if you are not already doing so; decrease the sin of the
units (perhaps by using the OPTIMIZE pragma); or recompile and
rulInk the entie program with the large memory model (model 1).

Compiatlon Units yet to be loaded -
(Unit Usti
are not found on either the source or default disks

The file(s) spccifled were not found on any of the disks, and are e-
quited by this program.

Constant Segment Oveflow -Cannot be larger than 64K
You tried to link a programn with mote than 64K of constants.
Janus/Ada only allows 64K of constants, due to the architectum of
the 8086.

Data Segment Overflow- Cannot be larger than 64K
You tried to link a piogram with more than 64K of statically alio.
cated data. The maximum physical segment sW is 64K and the
prsnrit version of Janus/Ada does not allow more thn one nomial
physical data segment. If you get this error, you must move enough
data out of the data segment to allow room both for the statically l.
located data and for dynamic data, Including local variables and
objectsallocated on the heap. If the package BIGARRAY was sup-
plied with your co;hpller, you can use It to move some of your data
Into a special physical data segment.

Dependency Table Oveillow
The linker's inturnal lable that says which units am interdependent
has overflowed. If you got thii error meesoge, your program ib too
big for Janus.'Ada in indle In one piece. Consider using the
Janu&*'Ia chainlng lrbuary (CHAINLIB) to break up your program
into s*pazate passe% (CHAINUB Is not provided with all Janus/Ada
packages),

Disk Full
Tie output disk was fuil.

UNK 12
Copyrlghi 1489, H H. . h4wae. ha.

Jllnk Manual

Entry Point Table Overilow
The entw point table has overflowed. If you get this error message,
your piograi Is too big for Janus/Ada to handle In one piece. Con.
idr using the Janus/Ad chaining library (CHAINLIB) to break
up your program Iuto separatez pass (CHAINUB is not provided
with all Janus/Ada packages).

Error Numbor Incoitect
The linker tried to use an unused error message. Please contact us
with details.

.JRL file not the same on Ime second r;ading
This error can only occur If you used two different swap disks on
the first and second reading of a given unit's JRL file or SRL file.

Minimum Code Option can only be used with memory model 0
The/M option is allowed only for small model programs.

Missing External Iten:
An external item was not found in the enty point table. The unit
name In which the iten was expected to be found Is listed with the
error message. The most likely mason for this error Is an Incorrect
compilation order. Anothor possible reason is that the JRL file or
SRL file for the given unit has been damaged. Try recompiling the
offending unit. If tht falls, then try tocompiling the entire program
(using CORDER, if you have It, to Insure that the order Is Correct).
if bolh of thee fail, please contact RR Software.

Not a .JRL file from the cursent version of Janus/Ada
The JRL or SRL version number (in the file) is not current. Recom-
pile the Indicated unit and (it it is a specification) any units that
depend on It.

Not enough RAM
This mussage Idicates thait them is not esiough available random
access n:emory inl yout n :ichine to run tiu linker. Janus/Ada re-
quires b40K of ran;doin access memory on your machine. If you
think you have' ?nough nmemory, but you get this message, check
whether you are running any menioiy resident programs; such
programns deetiet the amout of available memory on your
machine. If you have enot.gh memory and no memory resident
programs, pIubse Luntact HR.R Software. This message is usually
printed with the name of one-of JUNK's units; that information will

LINI. 13
Revion 4.6

JUnk Manual

help our support staff lot you know how imuch more memrioy you
will need IV. iun the linker.

Obsolete Units foundi
Some of tie units that were to be linked are obsolete that Is, some
of the units on which they depend have been recompiled more
reently thdn they have. The offending units were liste before this
message came out. The appropriate wils and anyunlis that
depend on them should be recompiled. If you have CRDER, the
Janus/Ada conopikton order tool, you may wish to use It to rmmm-
pile all obsolete units.

The following compilation units could not be loaded due to
a mutual dependency (probably caused by Elaborate pragmas)
(Unit List)
The unite Ilited below (df any) malaio be mutually dependent
[unit Usti
Thu mutual dependuncy must be removed.

The flist list of units shows a cycle of units that cannot be loaded,
The last unit In the list Is tequired to be elaborated before the firilt
unit In the list, and each other unit in the list is required to be
elaborated before the next unit in the list. Hence, there Is no legal
elaboration order. The reason that each unit In the list Is required
to be elaborated belore another listed unit is one of the folicwing
three reasons: the unit to be loaded frust is a specification and other
urit is 16- body; the unit to be loaded fis a specificatin men.
tiOnad in a withl ; luse of the other uni, or the unit lo be loaded
fiMs Is a body mntioned In tui ELABORATE pragma of the othe
unit. The swond list of units showsl other units that were not
loedable: thms intiy, dervnd on the units In the cycle, or them may
be anotr cyrie.
In~ theory, this etror can only occur if an ELABORATE pragrna is
present, siceotherwisethe compilatlonordiergivesa poper-
elaborntion order. I! you get this error and you have no
ELABOVNT priigmas in your progtam, then one of your SRL or
JRL fioes is piabab!y dainaged. Recompile your entire program in a
proper order

The unit xxxx Is~ obsolujte beCausle Yyyy was recompiled
Unit xxxx dqx-nds on unit yyyy, but yyyy was compiled more
recentltan. ,xx. Reomple Yxoc and any unis that depend on
it. Th~sis nse rne.- age ca~n appear as a waring it xxx Is an option-
al body.

LINI(*14

JAnk Manual

Too many Compilation Units In one Program
One pograrn nmy have only 300 compilation units. If you eceed
this limit, your piogmr is too big for JanuslAde to handle In one
pie.e. Conider using the JanusAda diaining library (CHAINMB)
ip break up your prograim Into separate passes (CHAINUB is not
provided with all Janus/Ada package).

Too many deletlors for IT option
Your prograin taqulreA the /T option to remove too many prnxe-
durrs. Reduce your use of unneeded procedures, compile acme of
your units without th,/T compiler option, or do no use the 'T op-
dion.

Too many extemals for IT option
Your program has so many externai reernces that the Janu/Ada
linker cannot keep track of all of them for the purposes of the trim-
ming done by theT11 option. Reduce the number of such remnces
(possibly by suppressing checks), compile some of your units
without the 17 compiler option, or do not use the JT option.

Too many generic check recoros
Your program ha more direct and Indirect generic lnstantlatons
than Janus/Ada can handle: too much memory would be needed
to check that the histantiations are all legal. Reduce your usap of

Too many relocations for T option
The program unit being loaded has so many relocations that the
Janus/Ada linker cannot ketp track of all of thorn for the purposes
of the tinuning done by the /' option. Reduce the number of
relocati oi by compiling ihe offending unit with the optimie on,
compiller he unit wilhout the /iT compiler option, or do not use the
/T option.

Too much Code for ono ,JRL File
The maximum trirount ci code (!ncluding constants) in one JRL
fileorSHil us 2000 tes TIhe JRL file or SRL file Is probably
damaged. RecompIle the lndlcaled unit and (if it Is a spedficaton)
any units that de;pend on It

R. isim 4.6

Junk Manual

Ort X)00(ha, MO:T)Ory Model dIlferent than speclffdAll unib- mt be comPiled with the same memzy mo~da as thatSPecfled. If fft$ nmua arzu wfth unit 41.86 *hAn you anwrnOt ushIg the Janus/Ada lhbidries for the corqetdal htIyWSDOS weach Path is not corret. = ,ttiyu

LINE 16C*utgf 198, ItR f WIIAJ. JA

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implemintation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
,are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-secific portions of the package STANDARD, .which
are not a part of Appendix F, are:

package STANDARD is
09...,....

type INTEGER is range -32768 .. 32767;

type LOWG INTEGER is range -21474838648 .. 2147483647;

type FLOAT is digits 6 range -((2.0 ** 128) - (2.0 ** 104))
((2.0 ** 128) - (2.0 ** 104);

type LC .FLOAT is digits 15 range -((2.0 ** 1024) - (2.0 ** 971))
((2.0 ** 1024) - (2.0 ** 971));

tyne DURATION is delta 0.00025 range -((2.0 ** 31) - 1)/4096.0
((2.0 ** 31) - 1)/4096.0;

end STAndARD;

C-1

Appendix F: Imptemntation Dependencies

7 Iunlesentation Deuendencies

This appendix specifies certain system-dependant characteristics
of the Janus/Ada version 2.2.0 386 to DOS compiler.

1.1 Implezentation Dependent Praguas

In addition to the required Ada pragmas, Janus/Ada also provides
several others. Some of these pragmas have a textual ranae.
Such pragmas set some value of importance to the compiler,
usually a flag that may be On or Off. The value to be used by
the compiler at a given point in a program depends on the
parameter of the most recent relevant pragma in the text of the
program. For flags, if the parameter is the identifier On, then
the flag is on; if the parameter is the identifier Off, then the
flag is off; if no such pragma has occurred, then a default value
is used.

The range of a pragma - even a pragma that usually has a textual
range - may vary if the pragma is not inside a compilation unit.
This matters only if you put multiple compilation units in a
file. The following rules apply:

1) If a pragma is inside a compilation unit, it
affects only that unit.

2) If a pragma is outside a compilation unit, it
affects all following compilation units in the
compilation.

Certain required Ada pragmas, such as INLINE, would follow
different rules; however, as it turns out, Janus/Ada ignores all
pragmas that would follow different rules.

The following system-dependent pragmas are defined by Janus/Ada.
Unless otherwise stated, they may occur anywhere that a pragma
may occur.

ALL CHECKS Takes one of two identifiers On or Off as its
argument, and has a textual range. If the
argument is Off, then this pragma causes
suppression of arithmetic checking (like pragma
ARITHCHECK - see below), range checking (like
pragma RANGECHECK - see below), storage error
checking, and elaboration checking. If the
argument is On, then these checks are all
performed as usual. Note that pragma ALLCHECKS
does not affect the status of the DEBUG pragma;
for the fastest run time code (and the worst run
time checking), both ALLCHECKS and DEBUG should

F-i

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Imlpementaion Dependencies

be turned Off and the pragma OPTIMIZE (Time)
should be used. Note also that ALL CHECKS does
not affect.the status of the ENUMTAB pragma.
Combining check suppression using the pragma
ALL CHECKS and using the pragma SUPPRESS may cause
unexpected: results; it should not be done.
However, ALL-CHECKS may be combined with the
Janus/Ada pragmas ARITHCHECK and RANGECHECK;
whichever relevant pragma has occurred most
recently will determine whether a given check is
performed. ALL CHECKS is on by default. Turning
any checks off may cause unpredictable results if
execution would have caused the corresponding
assumption to be violated. Checks should be off
only in fully debugged and tested programs. After
checks are turned off, full testing should again
be done, since any program that handles an
exception may expect results that will not occur
if no checking is done.

ARITHCHECK Takes one of the two identifiers On or Off as its
argument, 'and has a textual range. Where
ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for
situations where it is permitted to raise
NUMERIC ERROR; these checks include overflow
checking and checking for division by zero.
Combining check suppression using the pragma
ARITHCHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done.
However, ARITHCHECK may be combined with the
Janus/Ada pragma ALL CHECKS; whichever pragma has
occurred most recently will be effective.
ARITHCHECK is on by default. Turning any checks
off may cause unpredictable results if execution
would have caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

CLEANUP Takes an integer literal in the range 0 .. 3 as
its argument, and has a textual range. Using this
pragma allows zhe Janus/Ada run-:time system to be
less than meticulous about recovering temporary
memory space it uses. This pragma can allow for
smaller and faster code, but can be dangerous;

'2
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more
danger is permitted. A value of 3 - the default
value -causes the run-time system to be its usual
immaculate self. A value of 0 causes no
reclamation of temporary space. Values of 1 and 2
allow compromising between "cleanliness" and
speed. Using values other than 3 adds some risk
of your program running out of memory, especially
in loops which contain certain constructs.

DEBUG Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of line number code and
procedure name code. When DEBUG is on, such code
is generated. When DEBUG is off, no line number
code or procedure names are generated. This
information is used by the walkback which is
generated after a run-time error (e.g., an
unhandled exception). The walkback is still
generated when DEBUG is off, but the line numbers
will be incorrect, and no subprogram names will be
printed. DEBUG's initial state can be set by the
command line; if no explicit option is given, then
DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of Janus/Ada's
power in describing run time errors.

Notes:
DEBUG should only be turned off when the program
haa no errors. The information provided on an
error when DEBUG is off is not very useful.

If DEBUG is on at the beginning of a subprogram or
package specification, then it must be on at the
end of the specification. Conversely, if DEBUG is
off at the beginning of such a specification, it
must be off at the end. If you want DEBUG to be
off for an entire compilation, then you can either
put a DEBUG pragma in the context clause of the,
compilation or you can use the appropriate
compiler option.

ENUMTAB Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of enumeration tables.
Enumeration tables are used for the attributes
IMAGE, VALUE, and WIDTH, and hence to input and
output enumeration values. The tables are

F-3

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: uplementation Dependencie

generated when ENUMTAB is on. The state of the
ENU14TAB flag is significant only at enumeration
type definitions. If this pragma is used to
prevent generation of a type's enumeration tables,
then using the three mentioned attributes causes
an erroneous program, with unpredictable results;
furthermore, the type should not be used as a
generic actual discrete type, and in particular
TEXT IO.ENUMERATION 10 should not be instantiated
for ihe type. If the enumeration type is not
needed for any of these purposes, the tables,
which use a lot of space, are unnecessary.
ENUMTAB is on by default.

OPTIMIZER Takes one of the identifiers On or Off, or an
integer literal, as an argument. This pragma
turns optimization on or off, either totally or
partially. It has a textual range, except that if
the global optimizer is turned on for any part of
a compilation unit, then it is on for the entire
compilation unit. If the identifier is On or Off,
then Janus/Ada's optimizers are turned totally on
or totally off, as appropriate. An integer
literal as an arguement causes optimization to be
turned partially on or off.

The following integer literals are meaningful as
an argument to this pragma:

1) Turns check elimination optimizations on.
2) Turns the basic block optimizer on.
3) Turns the global optimizer on. If this is on

anywhere in a compilation unit, it will be on
everywhere in that unit.

4) Turns peephole optimizations on.
5) Puts the optimizer in 'Space' optimization

mode (the default).
6) Puts the optimizer in 'Careful' optimization

mode. The can take much longer than 'Quick'
optimization, but will find more
optimizations.

7) Puts the compiler in 'Fastest alignment'
mode. Data objects will be aligned for the
fastest performance on the target (unless
overridden by rep. clauses). This takes more
data space.

51) Turns chec-: elimination optimizations off.
Useful for finding uninitialized variables.

52) Turns the basic block optimizer off.

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Istpementatn Dependencies

53) Turns the global optimizer off.
54) Turns peephole optimizations off.
55) Puts the optimizer in 'Time' optimization

mode.
56) Puts the optimizer in 'Quick' optimization

mode. This is faster than 'Careful'
optimizations, and often will generate nearly
the same code.

57) Put the compiler in 'Smallest alignment"
mode. Data is only aligned, when required or
when the performance penalty is-severe.
Takes less data space.

Other integer literals will be ignored. In
general, this pragma should not be mixed with the
OPTIMIZE pragma, since one has a textual arange
and the other does not; this can lead to
surprising situations. However, the OPTIMIZE
pragma maybe used inside a compilation unit for
which pragma OPTIMIZER(On) has been listed before
the start of the compilation unit.

PAGE-LENGTH This pragma takes a single integer literal as its
argument. It says that a page break'should be
added to the listing after each occurrence of the
given number of lines. The default page length is
32000, so that no page breaks are generated for
most programs. Each page starts with a header
that looks like the following:

Janus/Ada Version 2.2.0 compiling file on
=t at jflf

RANGECHECK Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for
situations where it is expected to raise
CONSTRAINTERROR; these checks include null
pointer checking, discriminant checking, index
checking, array length checking, and range
checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS
may cause unexpected results; it should not be
done. However, RANGECHECK may be combined with
the Janus/Ada pragma ALLCHECKS; whichever pragma
has occurred most recently will be effective.
RANGECHECK is on by default. -Turning any checks
off may cause unpredictable results if execution

F-5

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: lmptementation Dependencies

would have Caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

SYSLIB This pragma tells the compiler that the current
unit is one of the standard Janus/Ada system
libraries. It takes as a parameter an integer
literal in the range 1 .. 15; only the values 1
through 4 are currently used. For example, system
library number 2 provides floating point support.
Do not use this pragma unless you are writing a
package to replace one of the standard Janus/Ada
system libraries.

VERBOSE Takes On or Off as its argument, and has a textual
range. VERBOSE controls the amount of output on
an error. If VERBOSE is on, the two lines
preceding the error are printed, with an arrow
pointing at the error. If VERBOSE is off, only
the line number is printed.

VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE(On):

15: if X = 10 then
16: Z := 10;

ERROR Identifier is not defined

The reason for this option is that an error
message with VERBOSE on can take a long time to be
generated, especially in a large program.
VERBOSE's initial condition can be set by the
compiler command line.

Pragma INTERFACE is supported for the language MASM. Pragma
INTERFACE NAME can be used to specify a name other than the Ada
one as the name of the MASM function called. INTERFACE NAME
takes two parameters, the Ada subprogram name, and a string
representing the MASM name for the function.

Pragma

INTERFACENAME is provided so that convienient Ada names can be

F-6

Copyright 1990, R.R. software, Inc. Revision 4.6

Appendix F: Imptementation Dependencies

used as appropriate, including operator symbols, and so that
foreign language names which are not legal Ada identifiers can beinterfaced to. If pragma. INTERFACE is used in a. program,

Jbind must be used to link it, and it must be linked with the
Interface run-time.

Several required Ada pragmas may have surprising effects in
Janus/Ada. The PRIORITY pragma may only take the value 0, since
that is the only value in the range System.Priority. Specifying
any OPTIMIZE pragma turns on optimization; otherwise,
optimization is only done if specified on the compiler's command
line. The SUPPRESS pramAa is ignored unless it only has one
parameter. Also, the following pragmas are always ignored:
CONTROLLED, INLINE, MEMORY-SIZE, SHARED, STORAGEUNIT, and
SYSTEM NAME. Pragma CONTROLLED is always ignored because
Janus/Ada does no automatic garbage collection; thus, the effect
of pragma CONTROLLED already applies to all access types. Pragma
SHARED is similarly ignored: Janus/Ada's non-preemptive task
scheduling gives the appropriate effect to all variables. The
pragmas INLINE and.SUPPRESS (with two parameters) provide
recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORYSIZE,
STORAGE-UNIT, and SYSTEM NAME all attempt to make changes to
constants in the System package; in each case, Janus/Ada allows
only one value, so that the pragma is ignored.

7.2 Inplementation Dependent Ittributes

Janus/Ada does not provide any attributes other than the required
Ada attributes.

1.3 Specification of the Package SYSTEM

The package System for Janus/Ada has the following definition.

package System is

-- System package for Janus/Ada

-- Types to define type Address.
type Word is range 0 .. 65536;
for Word'Size use 16;
type Offset-Type is new Word;
type Address is record

Offset : Offset-Type;
Segment : Word;

end record;
Function "+" (Left : Address; Right : OffsetType) Return

Address;

F-7

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Iulp|exntation Dependencies

Function "1+" (Left : OffsetType;-Right : Address) Return
Address;

Function "-"(Left : Address; Right : OffsetType) Return
Address;

Function "-" (Left, Right : Address) Return OffsetType;

type Name is (MSDOS2);

System-Name : constant Name := MSDOS2;

Storage-Unit : constant := 8;
Memory Size : constant :- 65536;

-- Note: The actual memory size of a program is
-- determined dynamically; this is the maximum
-- number of bytes in the data segment.

-- System Dependent Named Numbers:
MinInt : constant :- -2147483648;
Max Int : constant :- 2147483647;
Max Digits : constant :- 15;
Max Mantissa : constant :- 31;
Fine Delta : constant :- 2#1.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick : constant :- 0.01; -- Some machines have less

-- accuracy; for example, the IBM PC actually ticks
-- about every 0.06 seconds.

-- Other System Dependent Declarations
subtype Priority is Integer range 0 .. 0;

typo Byte is range 0 .. 255;
for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the 8-bit
machine byte. The type Word is a 16-bit Unsigned Integer type,
corresponding to a machine word.

F.4 Restrictions on Representation Clauses

A length clause that specifies T'SIZE has the following
restrictions:

If T is a discrete type, or a fixed point type, then the
size expression can given any value between 1 and 32 bits
(subject, of course, to allowing enough bits for every
possible value). Signed and unsigned representations are
supported.

F-8

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: ItpLementation Dependencies

If T is a floating point type, sizes of 32 and 64 bits are
supported (corresponding to Float and LongFloat
respectively).

If T is an array or record type, the expression must give
enough room to represent all of the components of the type
in their object representation. This can be smaller than
the default size of the type.

If T is an access type or task type, the expression must
give the default size for T.

A length clause that specifies T'STORAGESIZE for an access type
is supported.

Any integer value can be specified. STORAGEERROR will be raised
if the value is larger than available memory; no space will be
allocated if the value is less than or equal to zero.

A length clause that specifies T'STORAGE SIZE for a task type T
is supported. Any integer value can be specified. Values
smaller than 256 will be rounded up to 256 (the minimum
T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type
must give a value (subject to the Ada restrictions) in the range

2.0 ** (-99) .. 2.0 ** 99,

inclusive.

An enumeration representation clause for a type T may give any
integer values within the range System.Min.Int .. System.MaxInt.
If a size length clause is not given for the type, the type's
size is determined from the literals given. (If all of the
literals fit in a byte, then Byte'Size is used; similarly for
Integer and LongInteger).

The expression in an alignment clause in a record representation
clause must equal 1 or 2 (to specify Byte or Word alignment
respectively). The alignment value is respected for all object
creations unless another representation clause explicitly
overrides it. (By placing a component at a non-aligned address,
for example).

A component clause may give any desired storage location. The
size of the record is adjusted ipward if no representation clause

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Imtementation Dependencies

has been given, and more space is needed for the specified
storage location to be obeyed.

The range for specifying the bits may specify any values within
the following limitations (assuming enough bits are allowed for
any value of the subtype):

If the component type is a discrete or fixed point type, any
value may be specified for the lower bound. The upper bound
must satisfy the equation

UB - (LB - (LB Mod System.STORAGEUNITSIZE)) <= 32.

*f the component type is any other type, the lower bound
must satisfy

LB Mod System.STORAGEUNITSIZE = 0.

The upper bound must be

UO := LB + T'Size - 1;

Janus/Ada supports cddress clauses. on ,nost objects. Address
clauses are not allomied on parameters, generic formal parameters,
and renamed objects. The address 4iven for an object address
clause may be any legal value of type System.Address. It will be
interpreted as an absolute machine address, using the segment
part as a selector Af in the protected mode. It is the user's
responsibility to ensure that the value given makes sense (i.e.,
points at nemo:y, does not overlay other objects, etc.) No other
address clauses. are supported.

7.5 Implementation Defined Names

Janus/Ada uses no i.,olementation generated names.

7.6 Address Clause Expressions

The add:ress given for an object address clause may be any legal
value of type System.Address. It will be interpreted as an
absolute rachine address, using the segment part as a selector if
in the protected mode. It is the user's responsibility to ensure
that the value given makes sense (i.e., points at memory, does
not overlay other objects, etc.)

7.7 k7ncheckeC Coirsion Restrictions

We first make tkhe following definitions:

F-10

Copyright 1990, R.R. Softivare, Inc. Revision 4.6

Appendix F: Iaptementation Dependeies

A type or subtype is said to be a simple type or a simple subtype
(respectively) if it is a scalar (sub)type, an access (sub)type,
a task (sub)type, or if it satisfies the following two
conditions:

1) If it is an array type or subtype, then it is
constrained and its index constraint is static; and

2) If it is a composite type or subtype, then all of its
subcomponents have a simaple subtype.

A (sub)type which does not meet these conditions is called non-
sml. Discriminated records can be simple; variant records can
be simple. However, constraints which depend on discriminants
are non-simple (because they are non-static).

Janus/Ada imposes the following restriction on instantiations of
Unchecked Conversion: for such an instantiation to be legal, both
the source actual subtype and the target actual subtype must be
simple subtypes, and they must have the same size.

1.8 Implementation Dependencies of I/O

The syntax of an external file name depends on the operating
system being used. Some external files do not really specify
disk files; these are called devices. Devices are specified by
special file names, and are treated specially by some of the I/O
routines.

The syntax of an MS-DOS 2.xx or 5.xx filename is:

[d:][path]filename(.ext]

where "d:" is an optional disk name; "path" is an optional
path consisting of directory names, each followed by a
backslash; "filename" is the filename (maxim~um 8
characters); and ".ext" is the extension (or file type).
See your MS-DOS manual for a complete description. In
addition, the following special device names are recognized

STI: MS-DOS standard input. The same as Standard Input.
Input is buffered by lines, and all MS-DOS line editing
characters may be used. Can only be read. .

STO: MS-DOS standard output. The same as StandardOutput.
Can only be written.

ERR: MS-DOS standard error. The output to this device
cannot be redirected. Can only be written.

CON: The console device. Single character input with
echoing. Due to the design of MS-DOS, this device can
be redirected. Can be read and.written.

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Iplementation Dependencies

AUX: The auxiliary device. Can be read or written.
LST: The list (printer) device. Can only be written.
KBD: The console input device. No character interpretation

is performed, and there is no character echo.* Again,
the input to this device can be redirected, so it does
not alay refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN
without colons ':'). For compatibility reasons, we do not
recommend the use of these names.

The MS-DOS 2.xx version of the I/O system will do a search
of the default search path (set by the DOS PATH command) if
the following conditions are met:

1) No disk name or path is present in the file name;
and

2) The name is not that of a device.

Alternatively, you may think of the search being done if the
file name does not contain any of the characters ':', '/',
or '\'.

The default search path cannot be changed while the program
is running, as the path is copied by the Janus/Ada program
when it starts running.

Note:
Creates will never cause a path search as they must work in
the current dirctory.

Upon normal completion of a program, any open external files are
closed. Nevertheless, to provide portability, we recommend
explicitly closing any files that are used.

Sharing external files between multiple file objects causes the
corresponding external file to be opened multiple times by the
operating system. The effects of this are defined by your
operating system. This external file sharing is only allowed if
all internal files associated with a single external file are
opened only for reading (mode In File), and no internal file is
Created. Use Error is raised if these requirements are violated.
A Reset to a writing mode of a file already opened for reading
also raise Use Error if the external file also is shared by
another internal file.

Binary I/O of values of access types will give meaningless
results and should not be done. Binary I/O of types which are

F-12

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Iiplementation Dependencies

not simple types (see definition in Section F.7, above) will
raise UseError when the file is opened. Such types require
specification of the block size in the form, a capability which
is not yet supported.

The form parameter for Sequential_10 and DirectIO is always
expected to be the null string.

The type Count in the generic package DirectIO is defined to
have the range 0 .. 2_147_483_647.

Ada specifies the existence of special markers called terinators
in a text file. Janus/Ada defines the line terminator to be <LF>
(line feed), with or without an additional <CR> (carriage
return). The page terminator is the <FF> (form feed) character;
if it is not preceded by a <LF>, a line terminator is also
assumed.

The file terminator is the end-of-file returned by the host
operating system. If no line and/or page terminator directly
precedes the file terminator, they are assumed. If the form "Z"
is used, the <Ctrl>-Z character also represents the end-of-file.
This form is not necessary to correctly read files produced with
Janus/Ada and most other programs, but may be occasionally
necessary. The only legal forms for text files are "" (the null
string) and "Z". All other forms raise USE-ERROR.

If the form is."", the <Ctrl>-Z character is ignored on input.
The <CR> character is always ignored on input. (They will not be
returned by Get, for instance). All other control characters are
sent directly to the user. Output of control characters does not
affect the layout that Text_10 generates. In particular, output
of a <LF> before a' NewPage does not suppress the New_Line caused
by the NewPage.

On output, the "Z" form causes the end-of-file to be marked by a
<Ctrl>-Z; otherwise, no explicit end-of-file character is used.
The character pair <CR> <LF> is written to represent the line
terminator. Because <CR> is ignored on input, this is compatible
with input.

The type Text IO.Count has the range 0 .. 32767; the type
TextIO.Field also has the range 0 .. 32767.

10 Exceptions.USE ERROR is raised if something cannot be done
because of the external file system; such situations arise when
one attempts:

F-13

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: plentation Dependencies

to create or open an external file for writing when the
external file is already open (via a different internal
file).
to create or open an external file when the external
file is already open for writing (via a different
internal file).
to reset a file to a writing mode when the external
file is already open (via a different internal file).

- to write to a full disk (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open,

Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device;
- to create a file where a protected file (i.e., a

directory or read-only file) already exists;
- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying

the block size;
to open a device for direct I/O.

10 Exceptions.DEVICE ERROR is raised if a hardware error other
than those covered by USE ERROR occurs. These situations should
never occur, but may on rare occasions. For example,
DEVICE ERROR is raised when:

- a file is not found'in a Close or a Delete;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs on a sequential EndOfFile.

The subtypes Standard.Positive and Standard.Natural, used by some

i/O routines, have-the maximum value 32767.

No package LowLevel_I0 is provided.

7.9 Ruing the compiler and linker

The Janus/Ada compiler is invoked using the following format:

JANUS [path) filename C.ext] (/option)

where filename is an MS/DOS file name with optional path [path]
(here path includes disk names), optional extension [.ext], and
'compiler options (/option). If no path is specified, the current
disk and path is assumed. If no extension is specified, .PKG is
assmed.

The compiler options are:

F-14

Copyriht 1990, R/R. Software, Inc. Revision 4.6

Appendix F: ImqLe ntation Depen encies

B Brief error messages. The line in error is not printed
(equivalent to turning off pragma VERBOSE).

BS Brief statistics. Few compiler statistics are printed.

D Don't generate debugging code (equivalent to turning
off pragma DEBUG)

F Use in-line 8087 instructions for Floating point
operations. By default the compiler generates library
calls for floating point operations. The 8087 may be
used to execute the library calls. A floating point
support library is still required, even though this
option is used.

L Create a listing file with name filename.PRN on the
same disk as filename. The listing file will be a
listing of only the last compilation unit in a file.

Lpath Create a listing file on specified path 'path'.

Ox Object code memory model. X is 0 or 1. Memory model 0
creates faster, smaller code, but limits all code in
all units of a program to one MS-DOS segment (i.e., 64
kilobytes); Memory model 1 allows code size limited
only by your machine and operating system. See the
linker (JLINK) manual for more information. Memory
model 0 is assumed if this option is not given. The
compiler records the memory model for which each
library unit was compiled, and it will complain if any
mismatches occur. Thus, the compiler enforces that if
it is run using the /ol option, then all of the withed
units must have been compiled with the same option.

Q Quiet error messages. This option causes the compiler
not to wait for the user to interact after an error.
In the usual mode, the compiler will prompt the user
after each error to ask if the compilation should be
aborted. This option is useful if the user wants to
take a coffee break while the compiler is working,
since all user prompts are suppressed. The errors (if
any) will not stay on the screen when this option is
used; therefore, the console traffic should be sent to
the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many
error messages for each and every line in the program.
A lot of paper could be used this way! Note that the /Q

15

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: lmptementatfon Depeniencies

option disallows disk swapping, even if the /S option
is given.

Rpath Route the SYM, SRL, and JRL files produced by the
compiler to the specified path 'path'. The default is
the same path as filename.

Spath Route Scratch files to specified path. This option is
useful if you have a RAM disk or if your disk does not
have much free space. The use of this option also
allows disk swapping to load package specification
(.SYM) files. Normally, after both the compiler and
source file disks are searched for .SYM files, an error
is produced if they are not all found. However, when
the /S option is used, the compiler disk may be removed
and replaced by a disk to search. The linker has a
similar option, which allows the development of large
programs on systems with a small disk capacity. Note
that disk swapping is n= enabled by the /S option if
the /Q (quiet option) is also given. The /Q option is
intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problem is
that when the /S option is used to put scratch files on
a RAM disk, a batch file may stop waiting for a missing
.SYM or ERROR.MSG file; such behavior would not be
appropriate when /Q is specified.

T Generate information which allows trimming unused
subprograms from the code. This option tells the
compiler to generate information which can be used by
the remove subprograms from the final code. This
option increases the size of the .JRL files produced.
We recommend that it be used on reusable libraries of
code (like trig. libraries or stack packages) - that
is those compilations for which it is likely that some
subprograms are not called.

W Don't print any warning messages. For more control of
warning messages, use the following option form (Wx).

Wx Print only warnings of level less than the specified
digit 'x'. The given value of x may. be from 1 to 9.
The more warnings you are willing to see, the higher
the number you should give.

X Handle eXtra symbol table information. This option is
for the use of the JScope debugger and other tools.
This option requires large quantities of memory and
disk space, and thus should be avoided if possible.

F-16

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Iptemntation Dependencies

Z Turn on optimization. This has the same effect as if
the pragma OPTIMIZE were set to SPACE throughout your
compilation,

The default values for the command line options are:

B Error messages are verbose.
BS Statistics are verbose.
D Debug code is generated.
F Library calls are generated for floating point operations.
L No listing file is generated.
0 Memory model 0 is used.
Q The compiler prompts for abort after every error.
R The SYM, SRL, and JRL files is put on the same path as the

input file.
S Scratch files are put in the current directory.
T No trimming code is produced.
W All warnings are printed.
X Extra symbol table information is not generated.
Z Optimization is done only where so specified by pragmas.

Leading spaces are disregarded between the filename and the call
to JANUS. Spaces are otherwise not recommended on the command
line. The presence of blanks to separate the options or between
the filename and the extension will be ignored.

Examples:
JANUS test/Q/L
JANUS test.run/W4
JANUS test
JANUS test .run /B /W/L

The compiler produces a SYM (SYMbol table information) file when
a specification is compiled, and a SRL or JRL (Specification
ReLocatable or Janus ReLocatable) file when a body is compiled.
To make an executable program, the appropriate SRL and JRL files
must be linked (combined) with the run-time libraries. This is
accomplished by running the Janus/Ada linker, JLINK.

The Janus/Ada linker is invoked using the following format:

JLINK [path] filename (/option)

Here "filename" is the name of the SRL or JRL file created when
the main program was compiled (without the .SRL or .JRL
extension) with optional path name [path] (again, the disk name
is consider part 'of the path here), and compiler options
(/option). The filename usually corresponds to the first eight

F-17

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implematation Dependencies

letters of the name of your main program. A path may be
specified where the files are to be found. See the linker manual
for more detailed directions. We summarize here, however, a few
of the most commonly used linking options:

E Create an EXE file. This is assumed if the /01 option is
given. This allows allow a slightly larger total program
size if memory model is used.

FO Use software floating point (the default).
F2 Use hardware (8087) floating point.
L Display lots of information about the loading process.
00 Use memory model 0 (the default); see the description of the

/0 option in the compiler, above.
01 Use memory model 1.
Q Use quiet error messages; i.e., don't wait for the user to

interact after an error.
B Use brief statistics.
T Trim unused subprograms from the code. This option tells

the linker to remove subprograms which are never called from
the final output file. This option reduces space usage of
the final file by as much as 30K.

Examples:
JLINK test
JLINK test /Q/L
JLINK test/Ol/L/F2

Note that if you do not have a hardware floating point chip, and
if you are using memory model 0, then you generally will not need
to use any linker options.

F-18

Copyright 1990, R.R. Software, Inc. Revision 4.6

